Foregrounds and Simulations for CMB Lensing: Update and Next Steps

Blake D. Sherwin
NASA Einstein Fellow, LBNL

For the S4 lensing group (Alex van Engelen, Neelima Sehgal, Mat Madhavacheril, Colin Hill, DW Han, Yuuki Omori, Marcelo Alvarez, Gil Holder, Kyle Story, Rupert Allison, and others)
Reminder: High Precision Lensing

- A new regime: polarization, \(\phi \sim \text{EB} \) estimator; ultra-high precision (0.2\%) power spectrum \(C_{l\phi\phi} \sim \text{EBEB} \)

- Stringent requirements for biases to lensing (\(\sim \text{EBEB} \)) and delensing
Outline

• Galactic foregrounds: simulations and biases to lensing (preliminary!)

• Requirements for foreground cleaning

• Application to delensing: the path forward

• Extragalactic foregrounds: simulations and biases
C_{\phi\phi} Lensing Biases from Dust Polarization

- **Unknown dust bias to lensing**, as unknown small scale non-Gaussian dust. How to estimate?
 1. Data: intensity + constant polarization angle and fraction
 2. Data: angles from HI
 3. Simulations
Estimates of $C_l^{\phi \phi}$ Dust Polarization Bias

I. Constant Polarization Angle and Fraction

- Get Q, U dust by rescaling 353 GHz Planck intensity. Measure lensing: biases appear small but non-negligible (~1%)
Estimates of $C_{l}^{\Phi\Phi}$ Dust Polarization Bias

II. HI Filament Directions to Obtain Angles

[A. v. Engelen, D. Han, N. Sehgal, S. Clark, C. Hill]

10x10 degree cutouts covering 60% of sky. In progress (complications with excess small-scale noise)
Estimates of $C_l^{\phi \phi}$ Dust Polarization Bias

III. Simulations With Magnetic Turbulence

[A. v. Engelen, D. Han, N. Sehgal]
[Vansyngel, Boulanger++ 2016]

- Median bias appears small but not negligible – \sim0.1-1% (60% of sky) – but: outliers! Less for 50%. Caveat: is non-Gauss. realistic?
Estimates of $C_l^{\Phi\Phi}$ Dust Polarization Bias

III. Simulations With Magnetic Turbulence

[A. v. Engelen, D. Han, N. Sehgal]
[Vansyngel, Boulanger++ 2016]

Next steps for foreground bias estimation:

- Investigate bias with more restrictive masks and higher l_{min}
- Finalize HI estimate and checks
- Similar analysis for synchrotron?

• Median bias appears small but not negligible – ~0.1-1% (60% of sky) – but: outliers! Less for 50%. Caveat: is non-Gauss. realistic?
Requirements for Foreground Cleaning

• Early results: one small-scale frequency channel appears insufficient.

• If with further work foregrounds remain \(\sim\) percent-level, multifrequency cleaning with dust channel will be required (+synchrotron, unless we can establish unimportance)

• What instrumental requirements are there (resolution, noise...) for successful lensing cleaning?
Foreground Cleaning – Resolution requirements?

• Assume: dust, synchrotron with known frequency scaling.

• A start: can you clean foregrounds without loss of S/N for a 5m telescope?

• Clean only E in EBEB to remove non-Gaussian bias (caveat: iteration)

<table>
<thead>
<tr>
<th>Freq. (GHz)</th>
<th>FWHM 5 m (arcmin)</th>
<th>Pol. map depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>12.5</td>
<td>24.6</td>
</tr>
<tr>
<td>29</td>
<td>9.0</td>
<td>17.4</td>
</tr>
<tr>
<td>40</td>
<td>6.6</td>
<td>16.9</td>
</tr>
<tr>
<td>95</td>
<td>2.8</td>
<td>4.7</td>
</tr>
<tr>
<td>150</td>
<td>1.8</td>
<td>5.0</td>
</tr>
<tr>
<td>220</td>
<td>1.2</td>
<td>16.3</td>
</tr>
<tr>
<td>270</td>
<td>1</td>
<td>27.9</td>
</tr>
</tbody>
</table>
Forecast noise levels for linear combination (ILC) with deprojection of different components
Foreground Cleaning Performance
[C. Hill, M. Madhavacheril]

ILC with deprojection: negligible lensing S/N loss for 5m telescope (c.f. 150GHz)
Foreground Cleaning Performance

[C. Hill, M. Madhavacheril]

Path forward:

- Investigate for realistic S4 configurations, find freq. + resolution limits where S/N is kept

ILC with deprojection: negligible lensing S/N loss for 5m telescope (c.f. 150GHz)
Effect on Delensing: Path Forward for Galactic Foregrounds

Focus on non-Gaussian biases
[Sherwin/Schmittfull 2015]

- Use non-Gaussian dust sims to get $\phi(EB)_{\text{dust}}$
- Make dusty delensing template
 $B_{\text{temperedust}} = E_{\text{dust}} \times \phi(EB)_{\text{dust}}$
- Estimate bias to delensing
 $B_{\text{dust}} \times B_{\text{temperedust}}$ (+ extra terms)

Dust Template / Simulation

Lensing map and B template

$\hat{B}_{\text{lens dust}}$
Outline

• Galactic foregrounds: simulations and biases
• Requirements for foreground cleaning
• Application to delensing: the path forward
• Extragalactic foregrounds: simulations and biases
Extragalactic Foregrounds – Reminder

- Both multiplicative and additive biases from T foregrounds (~few percent)
- Multifrequency data and estimator “hardening” can help – better sims useful

Fractional Lensing Biases

[van Engelen++ 2013, Osborne+++2013]
Extragalactic foregrounds – new simulations, useful for $\phi(TT)$

[M. Alvarez, G. Stein, J. R. Bond, A. v. Engelen]

- Lensed sims based on halo model + 2LPT mass distribution, with correlated CIB, tSZ, kSZ… fields
- Parallel effort on N-body sims: Fabbian++
Extragalactic foregrounds – New cross-correlation bias estimates

Yuuki Omori, Stanford/SLAC sim group

- “Multiplicative” temperature biases may be large in cross-correlation with low-z tracers (EB better?)
• Galactic foreground biases are being estimated with varied methods. Early results: dust biases ~1%, small but non-negligible; need dust channel (+synchrotron?).

• But: seems cleaning can be done with moderate resolution requirements

• Have outlined a plan for determining biases to delensing

• New extragalactic foreground simulations constructed
Backup Slides
Simulations Involving Magnetic Turbulence
50% of the sky (not 60%)

[A. v. Engelen, D. Han, N. Sehgal]
[Vansyngel, Boulanger+++ 2016]

- Outliers reduced
Effect on Delensing: Gaussian Foregrounds

- Non-Gaussian bias probably greater concern (should be able to estimate Gaussian bias, and if not, residuals are quite flat)

![Graph showing BB residuals for 5% random bias in ΔL=100 bandpowers]

Sherwin/Schmittfull 2015
What Scales Does Lensing Information Come From?

FIG. 1: Fractional contributions from $E(l)$ and $B(l)$ at $l = |l|$ to the lensing reconstruction at $L \in \{300, 800, 1500, 2000\}$ (four panels, where in each panel $l = L$ is marked with a dotted line), for the fiducial noise and resolution used in this paper. At the lower L the EE reconstruction (dashed lines) is mainly from squeezed shapes with $l \gg L$, however the EB estimator the $E-$ and especially B-mode signal is important at much lower l (solid lines). Mathematically what is plotted is $A_{ij}(L, l_1) \propto \int l_1 d\phi_{l_1} f_{ij}(l_1, l_2) W_{ij}(l_1, l_2)$ as a function of l_1, or equivalently for l_2 in the case of the second field in the quadratic estimator, normalized to sum to unity.